PYROX Process Development

Mark A. Williamson Chemical Technology Division Argonne National Laboratory

> AFCI Review Meeting Albuquerque, NM January 22-24, 2003

Goal

Develop a commercially viable pyrochemical process for treating spent light water reactor fuel providing actinides for recycle to advanced reactor systems

Development efforts focused on three unit operations

- Reduction of oxide fuel
- High-throughput uranium electrorefining
- Transuranic element recovery

PYROX Process Flowsheet

Oxide Reduction Process

Electrochemical process selected for reducing spent fuel oxides to metals

- High product quality
- High throughput
- Simple engineering
- Cathode process

$$MO_X(s) + 2xe^{-} = M(s) + x O^{2-}$$

 Anode process $2 O^{2-} = O_2(g) + 4 e^{-}$

Electrolytic Process Development: Progress

- Process viability proven with UO₂ at laboratory scale (~20-350 g)
 - Routinely achieve complete reduction of UO₂
 - Two cell concepts being investigated; both perform well
 - No deleterious effects from alkali and alkaline earth elements in feed
 - Other fission product elements being investigated, no problems yet seen
- Successfully demonstrated reduction of mixed oxide fuel (UO₂ - 5wt% PuO₂)
 - Complete conversion of actinide oxides to base metals, including americium oxide
- Reduction rates are very good
 - Cells designed for collecting fundamental data, not optimized for rate
- Methods devised for analysis of reduction product
 - Combustion analysis
 - Bromination in ethyl acetate / ICP-AE analysis

Reduction Cell and Product

Argonne National Laboratory Chemical Technology Division

Anode Development

Material selection

- Thermodynamic assessments
- Industrial and prior Laboratory experience
 - Pt, Au, doped SnO₂, Li₂SnO₃, LiFeO₂, CoFe₂O₃, BaCrO₄, RuO₂, and SrRuO₃

Materials fabrication

- Fabrication issues sidelined testing monolithic Li₂SnO₃, RuO₂ and SrRuO₃
- Composite ceramics of SrRuO₃ and RuO₂ fabricated
- Optimization of fabrication process for composite material underway

Anode material evaluation

- Chemical exposure tests in LiCl-Li₂O at 650°C
 - BaCrO₄ eliminated
- Electrical conductivity at temperature (pure materials)
- Cyclic voltammetry
- Current behavior at constant voltage

Anode Material Evaluation

Cyclic voltammogram for Au wire, LiCl – 1 wt% Li₂O at 650°C, 5 mV/s scan rate, Ni/NiO reference electrode

Anode Material Evaluation (cont.)

Cyclic voltammogram for SrRuO₃ composite, LiCl – 1 wt% Li₂O at 650°C, 5 mV/s scan rate, Ni/NiO reference electrode

Anode Material Evaluation (cont.)

Cyclic voltammogram for Au disk, LiCl – 1 wt% Li₂O at 650°C, 5 mV/s scan rate, Ni/NiO reference electrode

Irradiated Fuel Reduction Demonstration

Electrolytic cell being fabricated for demonstration of oxide reduction process with irradiated fuel at ANL-ID

Process Modeling and Cell Design

Develop an electrochemical model that simulates laboratory-scale cells and use the model as a tool to design scale-cells

Model

- Combines thermodynamic, kinetic, and transport phenomena through a set of nonlinear coupled differential equations that can be solved numerically
- Determines the current, potential, concentration, temperature, and flow distributions inside an electrochemical cell
- Demonstrated as a valuable tool for electrochemical systems to accurately account for changes in scale

Input to electrochemical model

- Physical parameters, thermodynamic information and conductivities obtained from literature
- Kinetic rate constants determined from cyclic voltammetry of anode materials and UO₂ electrodes
- Gas evolution characteristics at anode along with oxide and lithium transport parameters will be inferred from simulations of laboratory-scale studies

Process Modeling and Cell Design: Progress

- Developed electrochemical model for UO₂ electrode in laboratory-scale cell geometries
- Conducting initial simulation studies to insure understanding of UO₂ reduction process mechanism and to establish unknown parameter values
- Initiated fluid dynamics calculations for mass transport of oxide ions from UO₂ electrode to anode

Future Directions

- Scale-cell design and testing with UO₂ and mock fuel
 - Target size: 100 kg HM with oxygen gas handling capability
 - Refine process model
 - Select cell concept for further development
- Anode materials development and testing
 - Optimize fabrication parameters (Particle size, T, t)
 - Produce monolithic ceramic and composite anodes
 - In-cell evaluation of most promising materials
- Laboratory-scale tests (50-500 g HM)
 - Evaluate fission product behavior
 - · Te, I, Se
 - · Rare earth, Y
 - Materials test-bed
 - Identify and evaluate materials of construction

Acknowledgements

PYROX process development is accomplished with staff from the following Divisions at Argonne:

- Chemical Technology
 - Nuclear Technology Department
 - Engineering Research Section of Battery Department
- Engineering Technology
 - Fuel Cycle Technology Section

